Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
PLoS One ; 17(9): e0273323, 2022.
Article in English | MEDLINE | ID: covidwho-2021911

ABSTRACT

BACKGROUND: The humoral response to SARS-CoV-2 can provide immunity and prevent reinfection. However, less is known about how the diversity, magnitude, and length of the antibody response after a primary infection is associated with symptoms, post-infection immunity, and post-vaccinated immunity. METHODS: Cook County Health employees provided blood samples and completed an online survey 8-10 weeks after a PCR-confirmed positive SARS-CoV-2 test (pre-vaccinated, N = 41) and again, 1-4 weeks after completion of a 2-dose series mRNA BNT162b2 COVID-19 vaccine (post-vaccinated, N = 27). Associations were evaluated between SARS-CoV-2 antibody titers, participant demographics, and clinical characteristics. Antibody titers and angiotensin-converting enzyme 2 (ACE2) neutralization were compared before and after the mRNA BNT162b2 COVID-19 vaccine. RESULTS: Antibody titers to the spike protein (ST4), receptor binding domain (RBD), and RBD mutant D614G were significantly associated with anosmia and ageusia, cough, and fever. Spike protein antibody titers and ACE2 neutralization were significantly higher in participants that presented with these symptoms. Antibody titers to the spike protein N-terminal domain (NTD), RBD, and ST4, and ACE2 IC50 were significantly higher in all post-vaccinated participant samples compared to pre-vaccinated participant sample, and not dependent on previously reported symptoms. CONCLUSIONS: Spike protein antibody titers and ACE2 neutralization are associated with the presentation of anosmia and ageusia, cough, and fever after SARS-CoV-2 infection. Symptom response to previous SARS-CoV-2 infection did not influence the antibody response from subsequent vaccination. These results suggest a relationship between infection severity and the magnitude of the immune response and provide meaningful insights into COVID-19 immunity according to discrete symptom presentation.


Subject(s)
Ageusia , COVID-19 , Angiotensin-Converting Enzyme 2 , Anosmia , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines , Cough , Humans , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Sci Transl Med ; 14(655): eabn3041, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1962063

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic evolves and vaccine rollout progresses, the availability and demand for monoclonal antibodies for the prevention and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also accelerating. This longitudinal serological study evaluated the magnitude and potency of the endogenous antibody response to COVID-19 vaccination in participants who first received a COVID-19 monoclonal antibody in a prevention study. Over the course of 6 months, serum samples were collected from a population of nursing home residents and staff enrolled in a clinical trial who were randomized to either bamlanivimab treatment or placebo. In an unplanned component of this trial, a subset of these participants was subsequently fully vaccinated with two doses of either SpikeVax (Moderna) or Comirnaty (BioNTech/Pfizer) COVID-19 mRNA vaccines. This post hoc analysis assessed the immune response to vaccination for 135 participants without prior SARS-CoV-2 infection. Antibody titers and potency were assessed using three assays against SARS-CoV-2 proteins that bamlanivimab does not efficiently bind to, thereby reflecting the endogenous antibody response. All bamlanivimab and placebo recipients mounted a robust immune response to full COVID-19 vaccination, irrespective of age, risk category, and vaccine type with any observed differences of uncertain clinical importance. These findings are pertinent for informing public health policy with results that suggest that the benefit of receiving COVID-19 vaccination at the earliest opportunity outweighs the minimal effect on the endogenous immune response due to prior prophylactic COVID-19 monoclonal antibody infusion.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
4.
Immunohorizons ; 6(6): 408-415, 2022 06 24.
Article in English | MEDLINE | ID: covidwho-1911831

ABSTRACT

There are conflicting data about level and duration of Abs to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children after symptomatic or asymptomatic infection. In this human population, we enrolled adults and children in a prospective 6-mo study in the following categories: 1) symptomatic, SARS-CoV-2 PCR+ (SP+; children, n = 8; adults, n = 16), 2) symptomatic, PCR-, or untested (children, n = 27), 3) asymptomatic exposed (children, n = 13), and 4) asymptomatic, no known exposure (children, n = 19). Neutralizing Abs (nAbs) and IgG Abs to SARS-CoV-2 Ags and spike protein variants were measured by multiplex serological assay. All SP+ children developed nAb, whereas 81% of SP+ adults developed nAb. Decline in the presence of nAb over 6 mo was not significant in symptomatic children (100 to 87.5%; p = 0.32) in contrast to adults (81.3 to 50.0%; p = 0.03). Among children with nAb (n = 22), nAb titers and change in titers over 6 mo were similar in symptomatic and asymptomatic children. In children and adults, nAb levels postinfection were 10-fold lower than those reported after SARS-CoV-2 mRNA vaccination. Levels of IgG Abs in children to SARS-CoV-2 Ags and spike protein variants were similar to those in adults. IgG levels to primary Ags decreased over time in children and adults, but levels to three spike variants decreased only in children. Children with asymptomatic or symptomatic SARS-CoV-2 infection develop nAbs that remain present longer than in adults but wane in titer over time and broad IgG Abs that also wane in level over time. However, nAb levels were lower postinfection than those reported after immunization.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Child , Humans , Immunoglobulin G , Prospective Studies , Spike Glycoprotein, Coronavirus
5.
J Transl Med ; 20(1): 134, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1745446

ABSTRACT

BACKGROUND: A thorough understanding of a patient's inflammatory response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial to discerning the associated, underlying immunological processes and to the selection and implementation of treatment strategies. Defining peripheral blood biomarkers relevant to SARS-CoV-2 infection is fundamental to detecting and monitoring this systemic disease. This safety-focused study aims to monitor and characterize the immune response to SARS-CoV-2 infection via analysis of peripheral blood and nasopharyngeal swab samples obtained from patients hospitalized with Coronavirus disease 2019 (COVID-19), in the presence or absence of bamlanivimab treatment. METHODS: 23 patients hospitalized with COVID-19 were randomized to receive a single dose of the neutralizing monoclonal antibody, bamlanivimab (700 mg, 2800 mg or 7000 mg) or placebo, at study initiation (Clinical Trial; NCT04411628). Serum samples and nasopharyngeal swabs were collected at multiple time points over 1 month. A Proximity Extension Array was used to detect inflammatory profiles from protein biomarkers in the serum of hospitalized COVID-19 patients relative to age/sex-matched healthy controls. RNA sequencing was performed on nasopharyngeal swabs. A Luminex serology assay and Elecsys® Anti-SARS-CoV-2 immunoassay were used to detect endogenous antibody formation and to monitor seroconversion in each cohort over time. A mixed model for repeated measures approach was used to analyze changes in serology and serum proteins over time. RESULTS: Levels of IL-6, CXCL10, CXCL11, IFNγ and MCP-3 were > fourfold higher in the serum of patients with COVID-19 versus healthy controls and linked with observations of inflammatory and viral-induced interferon response genes detected in nasopharyngeal swab samples from the same patients. While IgA and IgM titers peaked around 7 days post-dose, IgG titers remained high, even after 28 days. Changes in biomarkers over time were not significantly different between the bamlanivimab and placebo groups. CONCLUSIONS: Similarities observed between nasopharyngeal gene expression patterns and peripheral blood biomarker profiles reveal a connection between the circulation and processes in the nasopharyngeal cavity, reinforcing the potential utility of systemic blood biomarker profiling for therapeutic monitoring of patient response. Serological antibody responses in patients correlated closely with reductions in the COVID-19 inflammatory protein biomarker signature. Bamlanivimab did not affect the biomarker dynamics in this hospitalized patient population.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , Biomarkers , Gene Expression , Humans , Nasopharynx , SARS-CoV-2
6.
Front Immunol ; 12: 790469, 2021.
Article in English | MEDLINE | ID: covidwho-1581320

ABSTRACT

Background: Neutralizing monoclonal antibodies (mAbs) to SARS-CoV-2 are clinically efficacious when administered early, decreasing hospitalization and mortality in patients with mild or moderate COVID-19. We investigated the effects of receiving mAbs (bamlanivimab alone and bamlanivimab and etesevimab together) after SARS-CoV-2 infection on the endogenous immune response. Methods: Longitudinal serum samples were collected from patients with mild or moderate COVID-19 in the BLAZE-1 trial who received placebo (n=153), bamlanivimab alone [700 mg (n=100), 2800 mg (n=106), or 7000 mg (n=98)], or bamlanivimab (2800 mg) and etesevimab (2800 mg) together (n=111). A multiplex Luminex serology assay measured antibody titers against SARS-CoV-2 antigens, including SARS-CoV-2 protein variants that evade bamlanivimab or etesevimab binding, and SARS-CoV-2 pseudovirus neutralization assays were performed. Results: The antibody response in patients who received placebo or mAbs had a broad specificity. Titer change from baseline against a receptor-binding domain mutant (Spike-RBD E484Q), as well as N-terminal domain (Spike-NTD) and nucleocapsid protein (NCP) epitopes were 1.4 to 4.1 fold lower at day 15-85 in mAb recipients compared with placebo. Neutralizing activity of day 29 sera from bamlanivimab monotherapy cohorts against both spike E484Q and beta variant (B.1.351) were slightly reduced compared with placebo (by a factor of 3.1, p=0.001, and 2.9, p=0.002, respectively). Early viral load correlated with the subsequent antibody titers of the native, unmodified humoral response (p<0.0001 at Day 15, 29, 60 and 85 for full-length spike). Conclusions: Patients with mild or moderate COVID-19 treated with mAbs develop a wide breadth of antigenic responses to SARS-CoV-2. Small reductions in titers and neutralizing activity, potentially due to a decrease in viral load following mAb treatment, suggest minimal impact of mAb treatment on the endogenous immune response.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , COVID-19 Drug Treatment , COVID-19/immunology , Adult , Antibodies, Neutralizing/immunology , Antiviral Agents/therapeutic use , Drug Combinations , Female , Humans , Male , Middle Aged , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL